1,2-Dimethyl-3,5-dioxopyrazolidin und seine Kondensationsprodukte mit Aldehyden

Zur Kenntnis organischer Lewissäuren, 7. Mitt.

Von

P. Margaretha, P. Schuster und O. E. Polansky*

Aus der Lehrkanzel für Theoretische Organische Chemie an der Universität Wien

(Eingegangen am 24. November 1967)

- 1,2-Dimethyl-3,5-dioxopyrazolidin wird durch direkte Umsetzung von Malonsäuredimethylester und sym-Dimethylhydrazin erhalten. Kondensation dieser Verbindung mit aliphatischen und aromatischen Aldehyden liefert elektrisch neutrale organische Lewissäuren, die in bezug auf die UV-Absorption weitestgehend den entsprechenden cyclischen Isopropylidenacylalen von Alkylund Aryl-methylenmalonsäuren gleichen.
- 1,2-Dimethyl-3,5-pyrazolidinedione obtained directly from dimethyl malonate and sym.-dimethylhydrazine. Condensation with aliphatic and aromatic aldehydes leads to electrically neutral organic Lewis acids. Their UV-spectra are similar to those of the corresponding cyclic isopropylidene acylals of substituted malonic acids.

Anläßlich der Untersuchungen über die Lewissäurestärke von Verbindungen des Typs I interessierte uns die Abhängigkeit der Säurestärke vom Rest R'. Wir berichten hier nur über die Darstellung sowie die UV-und NMR-Spektren von Verbindungen mit R'=CH₃. Die pK-Werte dieser und analoger Verbindungen mit anderen Resten R' bzw. R" werden in einer späteren Arbeit zusammenfassend mitgeteilt werden.

* Herrn Prof. Dr. Leopold Schmid zum 70. Geburtstag gewidmet.

Verbindungen vom Typ I sind durch Kondensation von 3,5-Dioxopyrazolidinen (II) mit Aldehyden leicht zugänglich. Während Verbindungen vom Typ II mit Arylresten¹ gut bekannt sind, weist nur ein einziges Literaturzitat auf den Heterocyclus mit R'=R"=CH₃ hin: Dashkevich und Siraya² erhielten durch Umsetzung von Kohlensuboxid und 1,2-Dimethylhydrazin mit AlCl₃ als Katalysator eine Verbindung (A), Schmp. 167—168° C.

$$O = C = C = C = O + CH_3NH - NHCH_3 \xrightarrow{AlCl_3} A$$
 (1)

Trotz mehrerer Versuche konnten wir die Verbindung A nach der Literaturangabe nicht erhalten.

Durch Umsetzung von Malonsäuredimethylester mit 1,2-Dimethylhydrazin bei etwa 100° C (2) erhielten wir jedoch eine Verbindung vom Schmp. 93° C, die sowohl in H_2O als auch in CHCl₃ gut löslich ist:

Der Schmelzpunkt unserer Verbindung II a liegt um fast 80°C tiefer als der von den russischen Autoren für A angegebene. Eine Identität der beiden Substanzen kann deshalb mit Sicherheit ausgeschlossen werden.

Die Struktur von II a bewiesen wir durch Elementaranalyse, Massenspektrum und Kernresonanzspektrum. Die Molgewichtsspitze im MS liegt bei 128 ME und beweist, daß II a monomer vorliegt. Das NMR-Spektrum in CDCl₃ weist nur 2 Signale (Singletts) im Intensitätsverhältnis 1:3 bei den chem. Verschiebungen $\delta = 3,1$ bzw. 3,2 ppm auf. Im Einklang mit der Struktur II a verschwindet in D_2O das weniger intensive Signal bei $\delta = 3,1$ ppm.

II a weist in neutralem Methanol keine UV-Absorption im Bereich über 230 mμ auf. Bei Zusatz von CH₃ONa erscheint eine intensive Bande bei $\lambda_{max}=246$ mμ (log $\epsilon=4,3$). Dies steht gleichfalls im Einklang mit der angeführten Struktur für II a. Nach Abspaltung des aeiden Protons am Methylenkohlenstoffatom war ein ähnlicher Chromophor wie im Fäll des Meldrumsäureanions³ ($\lambda_{max}=258$ mμ, log $\epsilon=4,1$) (III), oder des Anions von 1,2-Diphenyl-3,5-dioxopyrazolidin (II b) ($\lambda_{max}=256$ mμ, log $\epsilon=4,3$) zu erwarten.

 $^{^1}$ P. Wiley und J. Wiley: Pyrazolones, Pyrazolidones, and derivatives aus "The Chemistry of Heterocyclic Compounds" 1964, Interscience Publishers, p. 408 f.

² L. B. Dashkevich und V. M. Siraya: Zh. obsheh. Khim. **32**, 2330 (1962); Chem. Abstr. **58**, 7946 c (1963).

³ L. B. Eistert und F. Geiss, Chem. Ber. **94**, 929 (1961).

Tabelle 1. UV- und NMR-Spektren

And the second control of the second	And the second s	TIV Smolttman	1-4-100			NWB	NMR_Spektmim			
Verbindung	CH	CH ₃ OH	$0,5m$ -CH $_3$ ONa	$_{ m 3ONa}$		La La	Lage der Protonen	rotonen		andere
)	л _{тах} (п	λ_{\max} (mμ) $\log \varepsilon$ λ_{\max} (mμ) $\log \varepsilon$	$\lambda_{ m max} ({ m m})$	n) log e	Lsgsm.	Olef.	NCH3	Aromat	nat	
II a			246	4,3	$ m D_2O$ $ m CDCl_3$		3,30 3,20	-		$\mathtt{CH}_2 \colon 3,10$
VI					$^{ m CDCl}_{ m s}$	1	3,08	7,15		CH: 4,70 (Benzyl) CH: 4,30 (Ring)
I a: R=										(0
${\rm p\text{-}N(CH_3)_2C_6H_4}$	467	4,7	256	4,4	$CDCl_3$	7,70	3,20	6,55 8,28	6,72 8,45	$\mathrm{N}(\mathrm{CH_3})_2:3,05$
$p\text{-NO}_2C_6H_4$	316	4,3	249	4,2	CDCl ₃	7,85	3,30	8,18 8,52	8,33	
$\mathrm{C}_{6\mathbf{H}_{5}\cdots}$	318	4,4	250	4,2	$CDCI_3$	7,85	3,25	$^{\sim7,4}_{\sim8,5}$	(3)	
$\text{p-ClC}_6\text{H}_4$	328	4,4	250	4,2	$CDCl_8$	7,80	3,33	7,36 8,36	7,50 8,50	
p-CH ₃ OC ₆ H ₄	365	4,6	251	4,3	CDCl3	7,76	3,24	6,85 8,30	7,00	$\mathrm{OCH_3}$: 3,85
$\mathrm{p\text{-}OHC_6H_4}$	375	4,5	454 249	4,4 6,2	СН3ОН	7,78	3,25	6,83 8,36	6,98 8,51	
(CH ₃) ₂ CH	360 230	2,9 4,1	255	4,3	CC1₄	6,87	3,12	[ļ	$CH_3: 1,08; 1,20$ CH: 3,60-4,00

$$\begin{bmatrix} H-C & CO-O & CH_3 \\ CO-O & CH_3 \end{bmatrix} III & \begin{bmatrix} H-C & O & C_6H_5 \\ CO & & C_6H_5 \end{bmatrix} II \mathbf{b}$$

Kondensation von II a mit aliphatischen und aromatischen Aldehyden nach der Methode von Cope⁴ mit Piperidin und Eisessig (1:1) als Katalysator liefert die gewünschten Produkte I a in guter Ausbeute. Die Konstitution der Verbindungen I a wurde durch Elementaranalyse und NMR-Spektren sichergestellt (Tab. 1).

Tabelle 2*

${\bf Verbindung}$	M	Schmp	. Lsgm.	Farbe	Ausb.	umkrist. aus**:
II a	128	93		farblos	25%	CHCl ₃ /DIPÄ
VI	344	176	Benzol	farblos	44%	$\mathrm{Benzol}/P\ddot{A}$
Ia: R =						
$p-(CH_3)_2N-C_6H_4-$	259	168	Benzol	hellrot	89%	$\mathrm{Benzol}/P\ddot{A}$
$p ext{-} ext{NO}_2 ext{-} ext{C}_6 ext{H}_4 ext{-} ext{-}$	261	203	CHCl_3	violett	50%	$\mathrm{CHCl_3}/P\ddot{A}$
C ₆ H ₅ —	216	113	Benzol	violett	89%	$\mathrm{Benzol}/P\ddot{A}$
$ ext{p-Cl}C_6 ext{H}_4 ext{}$	250	157	$\mathrm{CHCl_3}$	$\operatorname{dunkelrot}$	62%	$\mathrm{Benzol}/P\ddot{A}$
$p\text{-}CH_3OC_6H_4$	246	121	Benzol	$\mathbf{hellrot}$	98%	$\mathrm{Benzol}/P\ddot{A}$
$p ext{-}OH ext{}C_6H_4 ext{}$	232	212	$\mathrm{CHCl_3}$	orange	40%	$\mathrm{CHCl}_3/P\ddot{A}$
$(\mathrm{CH_3})_2\mathrm{CH}$ —	182	51	Benzol	\mathbf{orange}	41%	$\operatorname{dest.}$ Kugelrohr

^{*} Sämtliche Kondensationsprodukte wurden analysiert. Die gefundenen Werte stimmen mit den berechneten zufriedenstellend überein.

** $P\ddot{A} = \text{Petrol}\ddot{a}\text{ther}; DIP\ddot{A} = \text{Di-isopropyl-}\ddot{a}\text{ther}$

Direkte Kondensationsversuche ohne Anwendung eines Wasserabscheiders führen zu *Michael*additionsprodukten (VI) (3):

$$C_6H_5CHO + 2H_2C \xrightarrow{CO}_{N} \xrightarrow{CH_3} \longrightarrow C_6H_5CH \left(HC \xrightarrow{CO}_{N} \xrightarrow{CH_3}\right)_2$$
(3)

Die UV-Absorptionsspektren aller Kondensationsprodukte I a waren denen der entsprechenden Methylenmeldrumsäuren (IV) sehr ähnlich⁵.

⁴ A. C. Cope, C. M. Hofmann, C. Wyckoff und E. Hardenbergh, J. Amer. Chem. Soc. 63, 3455 (1941).

⁵ P. Schuster, O. E. Polansky und F. Wessely, Tetrahedron 1966, Suppl. 8, part II, 463.

In alkalischem Methanol konnten bei allen Verbindungen Lewissäureeigenschaften nachgewiesen werden⁵. Eine Ausnahme bildet nur das Kondensationsprodukt aus p-Hydroxybenzaldehyd, bei dem durch CH₃ONa-Zusatz das phenolische Proton abgespalten wird. Hier treten 2 Absorptionsmaxima auf (Tab. 1).

Experimenteller Teil

a) Wasserfreies Dimethylhydrazin

1,2-Dimethylhydrazin \cdot 2 HCl 6 wurde mit einem Überschuß an fester KOH versetzt. Das bei der anschließenden Destillation bis 90°C übergehende Produkt wurde 5 Stdn. über KOH und 2 Tage über BaO getrocknet. Redestillation liefert die wasserfr. Base; Sdp. 79—80°C, Ausb. = 75%.

b) Darstellung von II a

5 g 1,2-Dimethylhydrazin und 11,7 g Malonsäuredimethylester wurden 6 Stdn. auf 75° C und dann noch eine Stde. auf 110° C erhitzt. Anschließend wurde bei 0,4 Torr destilliert. Das Produkt geht bei 108—120° C über und erstarrt im Kühler. Es wurde 2mal aus CHCl₃ und Diisopropyläther umkristallisiert. Schmp. 93° C. Ausb. 2,8 g (25%).

$$C_5H_8N_2O_2$$
. Ber. C 46,87, H 6,29, N 21,86. Gef. C 46,20, H 6,20, N 22,12.

c) Darstellung von I a

Eine Lösung von 0.65 g (0.005 Mol) II a und 0.008 Mol Aldehyd in 50 ml Benzol oder CHCl₃ wurde 30 Min. am Wasserabscheider gekocht und dann eingedampft. Der Rückstand wurde 2 mal aus dem jeweils angegebenen Lsgsm. umkristallisiert (Tab. 2).

Die UV-Spektren wurden auf einem Gerät Spectronic 505 der Firma Bausch & Lomb, die NMR-Spektren auf einem Varian A 60 A-Spektrometer aufgenommen.

Herrn Dozent Dr. H. Budzikiewicz, Techn. Hochschule Braunschweig, danken wir die Aufnahme des Massenspektrums; Frau Dr. Inge Schuster sind wir für die Aufnahme der NMR-Spektren, Herrn H. Bieler für die Durchführung der Mikroanalysen zu Dank verpflichtet.

⁶ J. Thiele, Ber. dtsch. chem. Ges. 42, 2577 (1909).